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We assess a mechanism which can transform neutrino-antineutrino asymmetries between avors
in the early universe, and con�rm that such transformation is unavoidable in the near bi-maximal
framework emerging for the neutrino mixing matrix. We show that the process is a standard
Mikheyev-Smirnov-Wolfenstein avor transformation dictated by a synchronization of momentum
states. We also show that avor \equilibration" is a special feature of maximal mixing, and carefully
examine new constraints placed on neutrino asymmetries. In particular, the big bang nucleosyn-
thesis limit on electron neutrino degeneracy j�ej . 0:04 does not apply directly to all avors, yet
con�rmation of the large-mixing-angle solution to the solar neutrino problem will eliminate the
possibility of degenerate big bang nucleosynthesis.

PACS numbers: 26.35.+c, 14.60.Pq FERMILAB-Pub-02/056-A

I. INTRODUCTION

As is well-known, the observational successes of Big
Bang Nucleosynthesis (BBN) are one of the pillars of
the standard cosmology [1]. If one assumes three stan-
dard neutrino avors, then the only free parameter is
the baryon to photon ratio nB=n . The value nB=n '
5�10�10 predicts light-element yields of 2H, 4He, and 7Li
that are in excellent agreement with observations. As is
often noted, this is particularly remarkable because the
absolute yields of these elements span several orders of
magnitude. This consistency implies that the post-BBN
processing of the light elements is largely understood, and
that one does not require new aspects of particle physics
beyond the Standard Model (SM) that would materially
a�ect BBN.
The basic consistency of our picture of the early uni-

verse is even more impressive when one considers other
recent cosmological measurements. Observations of the
acoustic peaks in the angular power spectrum of the Cos-
mic Microwave Background (CMB) give strong evidence
that 
total = 1:04 � 0:06 [2], i.e., the universe is at,
as predicted by ination. Taken together with measure-
ments of clusters of galaxies and the high-redshift SNIa
data, a mutually consistent picture [3] with 
matter ' 0:3
and 
lambda ' 0:7 is obtained. Additionally, the CMB
data indicate that 
baryon ' 0:04, in excellent agreement
with the BBN observations. Recent data on the cluster-
ing of galaxies also yield consistent values of 
matter and

baryon [4]. This agreement of the combined data is all
the more impressive because baryonic matter is such a
small fraction of the total energy density of the universe,
and because the BBN and CMB data reect measure-
ments of 
baryon at very di�erent epochs (� 102 s and
� 1013 s after the big bang, respectively).
Nevertheless, from a particle-physics point of view,

these impressively measured quantities are all totally un-
explained, both in their values and their nature (e.g.,
though we know that the particle dark matter is not

part of the SM, we do not know what it is). Just as
in accelerator-based particle physics, the underlying be-
lief is that more and more precise measurements will lead
us to the necessary clues on how to generalize the SM. In
particular, the baryon-antibaryon asymmetry of 5�10�10
remains a mystery, and is certainly an important clue for
understanding the universe at temperatures at least as
high as the electroweak scale.
Naturally, attention is also focused on the lepton-

antilepton asymmetry of the universe. General consid-
erations indicate that B � L may be conserved, so that
the lepton asymmetry is nL=n ' 5�10�10 as well. How-
ever, there are certainly viable models in which the lep-
ton asymmetry can be much larger [5], and if con�rmed,
would be a very important clue. Given constraints on
charge asymmetry, any large lepton asymmetry would
have to be hidden in the neutrino sector. Though the
baryon asymmetry can generically be limited to be less
than 10�8 simply to not overclose the universe, no similar
constraints exist in the lepton sector for light neutrinos.
Since neutrinos and antineutrinos should be in chem-

ical equilibrium until they decouple at a temperature
T � 2 MeV, they may be well-described by Fermi-Dirac
distributions with equal and opposite chemical poten-
tials:

f(p; �) =
1

1 + exp(p=T � �)
; (1.1)

where p denotes the neutrino momentum, T the tem-
perature and � is the chemical potential in units of T .
(There is a tiny non-thermal perturbation that occurs at
the epoch of e+e� annihilation at T ' 0:3 MeV, which
we can ignore.) The lepton asymmetry L� for a given
avor �� is related to the chemical potential by

L� =
n�� � n���

n
=

�2

12�(3)

�
�� +

�3�
�2

�
; (1.2)

where �(3) ' 1:202. Even enormous values of �� � 1 have
been allowed observationally. This is so distant from the
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naive SM prediction that any measured nonzero value
would be very important. Interest in searches for such
large values of �� is also driven by the fact that we ev-
idently have much to learn about the neutrino sector.
Previously, most attention was devoted to the possibil-
ity of signi�cant mixing of the SM active neutrinos with
light sterile neutrinos, which can generate large lepton
numbers L � 1 [6].
A general approach to setting limits on �� arises be-

cause for very large degeneracy, the e�ective number of
neutrinos is increased from the standard model predic-
tion by

�N� =
30

7

�
�

�

�2
+

15

7

�
�

�

�4
: (1.3)

This increases the expansion rate of the universe, chang-
ing the CMB results by magnifying the amplitude of the
acoustic peaks. For all avors, the bound j��j . 3 has
been obtained from the CMB alone [7]. Note that the
sign of �� is unconstrained. With future CMB data,
these limits may be reduced to j��j . 0:25 or less [8]. A
much stronger limit can be placed on �e with j�ej . 0:04
because of its e�ect on setting the neutron to proton ra-
tio prior to BBN by altering beta-equilibrium.1 If at
the same time ��;� are large, this e�ect can be partially
undone by the increased expansion rate, leading to the
often-quoted bounds [9, 10]:

� 0:01 < �e < 0:22 ; (1.4)

j��;� j < 2:6 ; (1.5)

where the upper limits are obtained only in tandem.

There are now three types of evidence for neutrino os-
cillations: solar neutrino [11] �e ! ��; �� with large (but
not maximal) mixing angle and Æm2 ' 10�5 eV2, at-
mospheric [12] neutrino ��; ��� ! �� ; ��� with maximal
mixing and Æm2 ' 10�3 eV2, and LSND [13] neutrino
��� ! ��e with a very small angle and Æm2 ' 1 eV2. It
is not possible to accomodate these three signals with
only three neutrinos, as there are only two independent
mass-squared di�erences. A possible fourth (sterile) neu-
trino can be invoked to create a new Æm2, but now that
the solar and atmospheric neutrino data indicate the ap-
pearance of active neutrino avors, there is a problem of
where to incorporate the required mixing with the sterile
neutrino. While four-neutrino models may still work, it
is only with diÆculty, both in �tting the oscillation data
(see, e.g., Ref. [14]) and through the e�ects on BBN (see,
e.g., Ref. [15]). The LSND signal will be conclusively
con�rmed or refuted by the MiniBooNE experiment [16].
For simplicity, we consider just three active neutrinos,

1 Beta-equilibriumis between the weak interactionsn+�e $ p+e�

and p + ��e $ n + e+. Positive �e increases the �e abundance
relative to ��e, forcing equilibrium towards lower n=p.

and neglect the LSND result (of course, if it is con�rmed,
a major revision will be necessary).
In such a three-neutrino framework, Lunardini and

Smirnov [17] suggested that the large mixing angles im-
plied by the present data may transfer any large asym-
metry hidden in ��;� to �e well before beta-equilibrium
freezeout at T ' 1 MeV. Thus, the stringent BBN limit
on �e might apply to all three avors, improving the
bounds on ��;� by nearly two orders of magnitude.
This proposal was recently studied in detail by Dol-

gov, Hansen, Pastor, Petcov, Ra�elt and Semikoz (DH-
PPRS) [18]. They found that close to complete trans-
formation of asymmetries �� and �� to �e was obtained.
This is an important result, as it excludes the possibil-
ity of degenerate BBN [19], and is the strongest limit on
the total lepton number of the universe and is likely to
remain so for the foreseeable future. In this article we ex-
amine the DHPPRS result, show it as the result of a syn-
chronized Mikheyev-Smirnov-Wolfenstein (MSW) trans-
formation and establish its robustness through physical
and numerical insight into the dynamics. We assess how
the results depend on the input parameters and consider
more exotic physical scenarios that might a�ect the re-
sults.

II. TWO-FLAVOR DENSITY MATRIX

EQUATIONS AND SYNCHRONIZED MSW

In this Section, we consider a mixed neutrino statisti-
cal ensemble in the early universe, with initial neutrino-
antineutrino asymmetries which are not equal among a-
vors. We show that this ensemble behaves as a synchro-
nized system following a single e�ective momentum state
that undergoes MSW transformation given large mixing
angles. In describing neutrino avor evolution in dense
environments such as the early universe, one must use a
density matrix description if decohering collisional pro-
cesses are signi�cant. Where such scattering processes
are not important, as is the case for some examples we
shall consider here, the evolution is coherent. However,
although it is then possible to solve a Schr�odinger-type
equation for the evolution, the density matrix equations
are more convenient. A useful parameterization of the
density matrix equations is the Bloch form [20].
In an environment such as the early universe, where the

potential arising from neutrino-neutrino forward scatter-
ing, (the neutrino self-potential) is important, active-
active mixing is substantially di�erent from active-sterile.
Forward scattering processes of the type ��(p) ! ��(p)
lead to refractive index terms which are o�-diagonal in
the avor basis f�; �g [21]. A useful and interesting cast-
ing of the Bloch formalism for pure active neutrino mix-
ing was done by Pastor, Ra�elt and Semikoz [22], which
allows an interpretation via analogy with the precession
of coupled magnetic dipoles. The analysis of Ref. [22]
considered the case of constant density, in the absence of
a background medium other than that provided by the
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neutrinos themselves. We shall have need to extend this
description to include a background medium of charged
leptons of a density that varies with time (or tempera-
ture). One particularly interesting feature �rst revealed
clearly in Ref. [22], is that the neutrino self-potential
(that is, the potential due to neutrino-neutrino forward
scattering) does not, in general, suppress avor oscilla-
tions, as one might have naively expected by analogywith
the potential from, say, a background of charged leptons.
This is in stark contrast to the case of active-sterile os-
cillations, where the e�ect of an asymmetry between the
active neutrinos and antineutrinos is always to suppress
mixing angles. Even for relatively small degeneracies, the
asymmetry term dominates the evolution and thus delays
transformation of such asymmetry from the active to the
sterile avor.
For active-active oscillations, no such simple mixing

angle suppression occurs as the neutrino asymmetry en-
ters both the diagonal and o�-diagonal terms in the ef-
fective Hamiltonian. These terms have the e�ect of syn-
chronizing the ensemble,2 resulting in collective behavior
resembling the evolution of a single momentum state in
the absence of the self-potential. The mixing angle for
this collective oscillation is determined essentially by the
background medium of thermal charged leptons. When
the density of this background decreases with tempera-
ture, the neutrinos evolve adiabatically from their initial
avor into vacuummass eigenstates. For large-angle mix-
ing, this implies signi�cant avor transformation.

A. Formulation

We express the mixing between two neutrino mass and
avor eigenstates as

�e = cos �0�1 + sin �0�2 ;

��� = � sin �0�1 + cos �0�2; (2.1)

where, in general, ��� denotes some linear superposition
of �� and �� , as we shall explain later. We parameterize
the two-avor neutrino density matrix in the form

�(p) =

�
�ee �e�
��e ���

�
=

1

2
[P0(p) + � �P(p)] ; (2.2)

and similarly for the antineutrinos, where we refer to
P(p) as the neutrino \polarization" vector. These quan-
tities are most usefully normalized such that

P(p)initial =
1

neq=T 3
[fe(p; �e)� f�(p; ��)] ; (2.3)

2 Note that this forward-scattering induced synchronization is un-
related to the synchronizatione�ect of Ref. [23] which arises from
rapid avor-blind collisions. It is remarkable that both collisions
and forward scattering lead to synchronization e�ects in the case
of active-active oscillations.

where neq0 =
R
d3p=(2�)3f(p; 0) = 3�(3)T 3=4�2.

In the absence of collision terms, P0(p) and the mag-
nitude of P(p) remain constant and the full evolution
equations for two mixed active avors in the early uni-
verse are

@tPp = +Ap �Pp + �(J� J)� Pp ; (2.4)

@tPp = �Ap �Pp + �(J� J)� Pp ;

where Pp denotes the polarization vectors for the neutri-
nos of momentum p while J denotes the corresponding
quantity integrated over momentum such that

J =

Z
d3(p=T )

(2�)3
Pp: (2.5)

Vectors with an overbar refer to the antineutrino quanti-
ties throughout. With the normalization we use here, the
length of the individual Pp vectors and that of J do not
redshift with temperature. The coeÆcient of the second
term is � � p

2GFn
eq. Time t and temperature T maybe

interconverted via the expression t ' 1:15 s (T=MeV)�2.
Decohering collisions (damping) of the system at high
temperatures forces the neutrinos into unmixed avor
states. We shall assume zero initial �ie and a �nite initial
�i�, taken to have negative sign.3 Therefore, the initial

alignment of the Pp are along the +z-axis, and Pp are
along the �z-axis.
The equations (2.4) are equivalent to the preces-

sion of magnetic dipoles in two \magnetic �elds": the
momentum-dependent Ap and the integrated neutrino

self-potential �(J � J). The e�ects of Ap, as we shall
show, are straightforward, but the neutrino self-potential
makes the system non-linear by explicitly coupling each
momentum mode to the evolution of every other mo-
mentum mode. An intuitive qualitative description of
the evolution in Eq. (2.4) for a constant-density system
without matter e�ects was provided in Ref. [22]. The
issue of the synchronization of the system has also been
studied in Ref. [24].
In general, the \magnetic �eld" vector Ap includes

contributions from vacuum mixing, a thermal potential
from the charged-lepton background, and a potential due
to asymmetries between the charged leptons

Ap = �p +
�
V T (p) + V B

�
ẑ: (2.6)

Vacuum mixing is incorporated by

�p =
Æm2

0

2p
(sin 2�0x̂� cos 2�0ẑ) ; (2.7)

where Æm2
0 = m2

2�m2
1 and �0 are the vacuum oscillation

parameters.

3 For the opposite sign, one simply reverses the directions of the
polarization vectors.
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The thermal potential from �nite-temperature mod-
i�cation of the neutrino mass due to the presence
thermally-populated charged leptons in the plasma is

V T (p) = �8
p
2GFp

3m2
W

(hEl� inl� + hEl+ inl+ ) : (2.8)

The neutrinos also contribute a thermal self-potential
similar to the form of the self-potential on the RHS of
Eqs. (2.4) [25], but unlike � � GF , the thermal self-
potential goes as G2

F . Unless the initial asymmetry is
of a size much too small to be interesting here, the G2

F
term is negligible by comparison with the order GF self-
potential and thus unimportant in determining the dy-
namics of the system.
The background potential arising due to asymme-

tries in charged leptons is nonzero only for electron
neutrinos to maintain charge neutrality of the baryon-
contaminated plasma:

V B =

(
�p2GF (ne� � ne+) for �e 
 ��;� ;

0 for �� 
 �� ;
(2.9)

where +(�) is for neutrinos (antineutrinos). Due to the
smallness of the baryon asymmetry relative to number
densities of thermalized species, this term is always neg-
ligibly small relative to the vacuum vector �p and the
thermal potential V T , and so we may take Ap = Ap.
In the absence of the neutrino self-potential it is pos-

sible to de�ne

Ap � Æm2
m

2p
(sin 2�mx̂� cos 2�mẑ); (2.10)

where Æm2
m and �m are the matter-a�ected oscillation

parameters. When the self-term must be included, the
nonlinearity of the problemmakes the notion of a matter-
a�ected mixing angle more subtle.

B. Synchronization

Taking the di�erence of the Eqs. (2.4), integrating over
momenta, and de�ning a collective polarization vector
I � J� J one obtains

@tI ' Ae� � I; (2.11)

where the appropriate e�ective \magnetic �eld" is

Ae� ' 1

I2

Z
Ap(Pp + Pp) � I: (2.12)

In fact, Eqs. (2.11-2.12) are exact only when I k (Pp +

Pp). The vector I thus precesses slowly aboutAe� . Since
the self-potential dominates Eqs. (2.4), the individual po-
larization vectors Pp all precess rapidly about I, and, if
initially aligned, are held together. The various vectors
are illustrated in Fig. 1.

z

y

Pp

x
−A eff

I

FIG. 1: Vector precession diagram. The angles and magni-
tudes of the vectors are not to scale but have been exaggerated
for clarity. For the situation of interest, the magnitude of I is
much greater than that of Ae� . When this condition holds, it
is a good approximation to describe the evolution of the po-
larization vectors for the individual momentum modes Pp as
a precessing about I. The vector I then precesses about Ae� ,
in the manner of a single momentum mode in the absence of
the self-term. For asymmetries between neutrino avors in
the early universe, Ae� and I are both initially aligned with
the z-axis, and, for maximal mixing, both adiabatically evolve
to align with the x-axis.

We assume for simplicity that the initial asymmetry
resides in a single avor. Although the coeÆcient of the
self-term makes it dominant, the avor transformation is
actually determined by the evolution of Ae� . In fact, if
one leaves out the self-term altogether, the synchroniza-
tion is of course lost, but the average avor evolution of
the system is almost completely unchanged.
Let us �rst consider the simple linearized case where

the self-potentials in Eqs. (2.4) vanish. In this case, the
polarization vector of each momentummodePp precesses
about its own respective Ap:

@tPp = +Ap �Pp ; (2.13)

@tPp = �Ap �Pp :

If one follows only the average momentum hp=T i '
3:15, Eqs. (2.13) are simply two linear equations with
a straightforward solution. Recall that each Pp is ini-
tially aligned along the +z-axis. At high temperatures,
jV T j � j�pj, and thus from Eq. (2.6) the Ap point in
the �ẑ direction. As the temperature of the universe
decreases, jV T j � T 5 decreases and the vectors Ap will
slowly rotate from the �ẑ direction toward the +x̂ di-
rection and the angle that Ap subtends with the z-axis
will asymptote to 2�0. This e�ect is a straightforward
MSW transformation of the asymmetry: the initial neu-
trino number excess in one avor evolves from a mass
eigenstate in matter (modi�ed by the thermal potential)
to a vacuum mass eigenstate with di�erent avor con-
tent. And, since Eqs. (2.13) are decoupled, the average-
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momentummode will describe the collective evolution of
the entire system.

In the substantially more involved system including the
self-potential (2.4), each momentum mode is coupled to
all other momenta through the self-term. Therefore, a
simplifying average-momentum technique is poorly jus-
ti�ed. However, if one blindly drives forward with an
average-momentum evolution of Eqs. (2.4), one luck-
ily recovers (nearly) the correct behavior. For the full-
momentum case including the self-potential, the I vector
will also initially be aligned with the z-axis. Using the ap-
proximate Eqs. (2.11) and making the as-yet unjusti�ed
assumption that Ae� follows the average of the Ap, then
the synchronized system will undergo MSW transforma-
tion at the exact same temperature as the over-simpli�ed
case (2.13). This is what we found numerically.

The fact that the neutrino avor system evolves to the
same end-state with and without the self-term appears at
�rst absurd. However, one must keep in mind that the
neutrino self-potential in a purely active neutrino sys-
tem a�ects the evolution drastically di�erently than the
familiar avor-diagonal potentials in the matter Hamil-
tonian present, for example, in evaluating the solar MSW
e�ect and active-sterile mixing in the early universe. The
neutrino self-potential, as the dominant precession term
for each momentum, only plays the role of forcing each
momentum mode to follow the collective vector I.

To explore the behavior of the system and verify the
approximations in arriving at the collective equations
(2.11-2.12), we numerically integrate Eqs. (2.4), which,
again, explicitly couple the full thermal distribution of
momenta to the quantum mechanical evolution of each
momentum mode. Because of the drastically di�erent
time scales over which the terms �p, V T (p) and �(J�J)
evolve, the system is a set of sti� nonlinear di�erential
equations and therefore requires careful treatment.

In Fig. 2a we show the evolution with the full equa-
tions (2.4) of a representative two-avor �e and �� sys-
tem with the best-�t solar LMA parameters. Shown is
the angle between each Ap and ẑ, which would determine
evolution of each Pp in the absence of the self-term. The
actual angle between Pp and ẑ is shown in Fig. 2b, dis-
playing the stunning synchronization of all momentum
modes, to roughly the orientation of Ap at the average
momentum hp=T i ' 3. Fig. 3 shows the tiny magnitude
of the angle between Pp and I, which is the result of the
synchronization.

Now, we justify why taking the evolution of Ae� to
be e�ectively that of the average of Ap luckily provides
the nearly the correct evolution. For the case where col-
lisional damping may be neglected and assuming that
both synchronization and the close alignment of Pp+Pp

with I holds, we may explicitly calculate Ae� which de-
scribes the MSW-like transition (the expressions for Ae�

and psync were independently calculated in Ref. [26]). We

FIG. 2: The angle between Ap and the z-axis is shown
in the upper panel in varying shades of gray, as a function
of the temperature of the universe (horizontally) and across
the neutrino spectrum (vertically). In the lower panel, the
angle between Pp and the z-axis is displayed in the same
fashion. As detailed in the text, all Pp ignore the momentum
dependence of Ap and are dramatically synchronized to a
single e�ective momentum, psync=T ' �. That is, all of the
Pp follow the orientation (i.e., have the same grayscale value)
of Ap at p=T ' �, shown with a white horizontal dashed line.

�nd

Ae� ' �
Æm2

0

2T

�
3=2

�2 + �2

��
sin 2�0x̂+ (� cos 2�0 + Z) ẑ

�
;

(2.14)

where

Z =
2T

Æm2
0

�
V T

p=T

��
�2 +

�2

2

�
: (2.15)

Note that Z is negative so there is no resonance. It is
helpful to re-express Eq. (2.14) in terms of e�ective \syn-
chronized" oscillation parameters as

Ae� � �sync (sin 2�syncx̂� cos 2�syncẑ) ; (2.16)
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FIG. 3: We show the angle between individual Pp and I as
a function of temperature of the universe (horizontally) and
the neutrino spectrum (vertically). The angles are extremely
small, indicating the degree of synchronization.

where the synchronized oscillation frequency is given by

�sync = �
Æm2

0

2T

�
3=2

�2 + �2

�q
sin2 2�0 + (� cos 2�0 + Z)2:

(2.17)

The size of �sync, which is proportional to an overall
factor of �, is not important in determining when the
MSW-like transformation takes place.4 It is the mixing
angle �sync that is important in describing the transfor-
mation resulting from the evolution into vacuum mass
eigenstates. This angle (i.e., half of the angle between
Ae� with the z-axis) is given by

sin2 2�sync =
sin2 2�0

sin2 2�0 + (� cos 2�0 + Z)2
; (2.18)

and thus we �nd it is the mixing angle which would cor-
respond to the momentum state

psync
T

= �
p
1 + �2=2�2 ' �: (2.19)

This is one of our principal results, and indicates a re-
markable coincidence. Namely, the apparently identical
evolution for the synchronized system including the self-
term and that found with a vanishing self-term only re-

4 If V T = 0, we �nd �sync ' Æm2
0=132T for � = 0:05 in agreement

with Ref. [18]. We note that the momentum scale p=T ' 132
does not determine the character of the solution.

sults from the fact that average momentum for a rela-
tivistic Fermi gas (with small chemical potential)

hp=T i = 7�4

180�(3)
' 3:15 (2.20)

is approximately �, the e�ective momentum of the syn-
chronized system (2.19) with � � �. One can observe
in Fig. 2 that the e�ective mixing angle (the angle of
Ap with respect to the z-axis) does in fact correspond to
the way in which the state p=T ' 3 would evolve in the
absence of the self-term.
It is clear that �sync depends only very weakly on the

size of the initial asymmetry, and in particular the trans-
formation will occur at almost the same temperature for
any plausible initial �. Additionally, if � were very large,
even a very small degree of avor transformation would
be suÆcient to upset successful BBN. We have also nu-
merically integrated the system for several initial asym-
metries, and veri�ed that the synchronized transforma-
tion is present for all asymmetries within the previous
limit in Eq. (1.4).
Note that a large mixing angle is essential in obtaining

avor \equilibration," i.e., that �i� is e�ectively trans-

ferred to �fe as shown by DHPPRS [18]. The underlying
dynamics is simply the adiabatic evolution of the initial
neutrinos into vacuum mass eigenstates. This would be
exactly the usual MSW e�ect5 if it were not for addi-
tional complexity of synchronization. We achieve equi-
libration in the sense that the initial asymmetry is par-
titioned across the avors (with the ratio of the �nal �fe
and �f�;� set by the vacuum mixing angle). This \equi-
libration" is simply a MSW transformation that leaves
the ensemble in a coherent state. This is to be distin-
guished from equilibration in the conventional sense of a
completely incoherent or relaxed state, i.e., one produced
by collisions.

III. NEUTRINO PROPERTIES AND

ASYMMETRY TRANSFORMATION

Since the asymmetry in electron neutrino number is
the most stringently constrained, its enhancement due
to coupling to the other avors is crucial. The neutrino
oscillation solution best �tting the observed solar electron
neutrino ux and spectra is the region of mixing parame-
ter space named the large mixing angle (LMA) solution,
with maximum likelihood parameters for two-neutrino
mixing of order Æm2

0 � 4� 10�5 eV2 and sin2 2�0 � 0:8.
Since the LMA mixing is large but not maximal, the �rst
mass state (jm1i) is more closely associated with the elec-

5 Note, however, that for a normal hierarchy we do not have a
resonance - the negative thermal potential makes the �e's lighter,
and does the same for ��e.
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tron neutrino and the other (jm2i) less so, and in order
to enable resonance in the sun, m1 < m2.

We also know from atmospheric neutrino observations
that � and � neutrino avors are maximally mixed su-
perpositions (or nearly so) of two mass states jm2i and
jm3i. Therefore, the avor composition of mass-state
jm2i is that of a nearly maximal superposition, and com-
plicates discussion of LMA mixing in neutrino environ-
ments where the avor content of jm2i is of interest.
However, a powerful simpli�cation can be made given

maximallymixed (or more generally \similarly coupled")
�� and �� , which allows a linear transformation of the
3 � 3 mixing matrix such that one e�ective avor state
j��� i is identically a vacuum mass eigenstate and decou-
ples from the matter e�ects [27]. It is suÆcient to follow
the two remaining states j�ei and j���i. This is only jus-
ti�ed if the momentum state (or more exactly, momen-
tum distributions) of the superimposed avors j��i and
j�� i are indistinguishable. That is, the temperatures and
chemical potentials of �� and �� should be equal, i.e., ��,
�� should be equilibrated. The atmospheric neutrino re-
sults actually can provide that �� and �� are equilibrated,
which we discuss in Section III B. Strictly speaking, the
similar-coupling limit is exact only when Ue3 = 0, and
we consider the more general case below.

A. Electron Flavor Transformation

Recall that we are interested in whether an asymmetry
initially present in the poorly-constrained �� or �� will
convert into a stringently-constrained �e=��e asymmetry.
We can analyze how the LMA mixing parameters evolve
in the early universe through the e�ective two-neutrino
system (�e; ���). The initial system may be prepared by
an unspeci�ed leptogenesis mechanism to be in an un-
mixed state with the asymmetry in ��� (�i�� 6= 0) and no

asymmetry in �e (�
i
e = 0) and remains in this state from

damping by collisions. We have de�ned the direction +ẑ
to correspond to the �e avor. Taking, for the sake of
the example, the initial �i�� to be negative, the vector I
will initially point in the +ẑ direction.

At initially high temperatures, the e�ective magnetic
�eld vector Ae� is dominated by the thermal lepton po-
tential Ve� , and is aligned in the �ẑ direction. As the
universe cools, Ae� rotates away from �ẑ and asymp-
totes to its vacuum value �sync, which lies close to the
+x̂ direction (i.e., the angle it makes with the z-axis is
2�0). A large vacuum mixing angle is clearly necessary
for this MSW transformation to work.

For an initial asymmetry of j�i�� j = 0:05, the evolution
of the synchronized vector components Ji are shown in
Fig. 4. The components are driven as a magnetic dipole
adiabatically following the evolution of the magnetic �eld
Ae� . The evolution of Pi( �Pi) at the average momentum
is the same if one excludes the self-potentials in Eq. (2.4).
The powerlaw growth of Jx is simply the evolution of the

FIG. 4: The evolution of Ji in the synchronized case with
LMA parameters. As the described in the text, the behavior
is essentially an MSW transformation �e $ ���. The antineu-
trinos j �Jij evolve identically. The fact that Jy is never large
demonstrates that all of the precession angles are small enough
that the evolution is dominantly in the x� z plane. The evo-
lution of Pi and �Pi at the average momentum is the same if
one excludes the self-potentials in Eq. (2.4).

synchronized mixing angle

Jx � 2�sync � 1

Z
� Æm2

0=2psync
V T (psync)

� T�6 ; (3.1)

and the growth of Jy � T�9 results directly from (2.11).
Obviously, the transformation occurs when the orienta-
tion of J rapidly evolves at h�pi � hV T i at T � 2 MeV.
The temperature of the transition point in Jx scales only
as (Æm2)1=6, so the results are rather insensitive to the
uncertainty in the LMA Æm2. The antineutrinos evolve
identically by following the vector �Ae� . The �nal state
of the asymmetry after the MSW transformation entering
the nucleosynthesis epoch is then transferred in propor-
tion to the vacuum mixing amplitude between the two
avors, i.e., Jz(1 MeV):

�fe =

�
1� cos 2�0

2

�
�i�� ; (3.2)

�f�� =

�
1 + cos 2�0

2

�
�i�� : (3.3)

Obviously, complete \equilibration" or �fe = �f�� only oc-
curs for maximal mixing. The antineutrino chemical po-
tential evolves to the values ��fe = ��fe and ��f� = ��f� . We
note that collisions (which we have neglected) will help
make the avor transformation more complete and thus
should reduce the sensitivity to the mixing angle.

B. Mu-Tau Flavor Transformation

Maximal neutrino mixing indicated by the Super-
Kamiokande observations of atmospheric neutrinos has
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nearly identical implications for evolution asymmetries
between �� and �� . Because of the hierarchy Æmatm �
ÆmLMA, h�pi � hV T i at the higher temperature T �
10 MeV. Necessary in driving the avor evolution here is
the presence of the remnant thermally-produced charged
muons with energy density

��� =
1

�2

Z
p2dp

q
p2 +m2

�

1 + exp
�q

p2 +m2
�=T

� : (3.4)

Though far from the thermal abundance of e� at T �
20 MeV, real muons remain enough to dictate the avor
evolution. However, since T < m�, the thermal potential
from Eq. (2.8) is modi�ed as hE��i ! h3

4
E��+p

2=3E��i
[28]. We solved the evolution of this case numerically,
explicitly including the thermal abundance of ��, whose
disappearance accelerates the growth of Jx and Jy away
from the power-law growth in the previous LMA case,
but for simplicity have ignored collisions (Fig. 5). Max-
imal mixing then gives an equilibration �f� = �f� , which
allows application of the simplifying basis transforma-
tion of the previous Section. Inclusion of collisions would
damp the oscillations at low temperatures but not the
transformation, as found by DHPPRS [18].
Interestingly, in the case of evolution without the pres-

ence of thermal ��, the evolution is di�erent, with pure
synchronized vacuum oscillations taking place (rotation
in the z � y plane) after the Hubble time exceeds the os-
cillation time. Collisions, which we have omitted, would
modify the oscillations seen here.

C. E�ects of Ue3

The possibility of a nonzero value of Ue3 obstructs the
simplifying linear transformation to the basis j�ei and
j���i. However, nonzero Ue3 may allow partial equilibra-
tion of ��; �� into �e earlier, at T � 5 MeV. For solar
LMA mixing, signi�cant transformation will always oc-
cur at T � 2 MeV so the value of Ue3 will not alter the
basic outcome. However, substantial equilibration at 5
MeV (well before beta-equilibrium freeze-out) makes the
general conclusions even more inevitable.
There are, however, some subtleties associated with

the sign of Æm2
atm - that is, whether the neutrino spec-

trum has a normal or inverted hierarchy.6 For a normal
hierarchy, the fact the thermal potential makes the �e's
(and �e's) lighter implies that that no resonance condi-
tions can be ful�lled in the early universe. With an in-
verted hierarchy however, a �e � ��� resonance will occur

6 The sign of the solar Æm2 is determined by the requirement that
there be a MSW transition in the sun, which precludes a reso-
nance in the early universe (for both neutrinos and antineutri-
nos). There is, however, no such constraint of the sign of the
atmospheric Æm2.

FIG. 5: The evolution of Ji ( �Ji are identical) for mu and
tau neutrino transformation with and without the inclusion
of thermal �� pairs. The spiky features indicate real oscilla-
tions going through zero, and the depth of the spikes on the
logarithmic scale is an artifact of numerical sampling. Those
oscillations are real and are determined by the atmospheric
Æm2

0. In the lower panel, Jx is zero since the mixing angle is
maximal. Collisions have been ignored.

when Ve� � Æm2
atm. We plot in Fig. 6 level crossing dia-

grams for neutrinos of the average energy in the absence
of the self potential. As discussed above, this is a very
good description of the evolution of the entire neutrino
distribution.
The Ue3 mixing angle is constrained to be small [29],

and as such, coherent evolution will not lead to large a-
vor transformation (for the inverted hierarchy, coherent
evolution through the resonance would swap asymme-
tries between avors). However, at T � 5 MeV colli-
sional processes are still highly important and will help
achieve equilibration. This should be somewhat more
e�ective for the inverted case (where the mixing angle
goes through a maximum) as collisions equilibrate most
e�ectively when mixing angles are large.

IV. NEW CONSTRAINTS

The electron neutrino asymmetry �e is limited by its ef-
fects on the primordial 4He abundance, Yp. At nucleosyn-
thesis, nearly all neutrons are incorporated into 4He nu-
clei, and Yp production is limited by the neutron fraction,
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FIG. 6: Level-crossing diagrams for neutrinos of the aver-
age momentum, in the absence of the self-potential. In (a)
we have a normal hierarchy, where the neutrino mass eigen-
states asymptote to their vacuum values, without ever going
through a resonance. This is to be contrasted with the in-
verted hierarchy shown in (b) where nonzero Ue3 leads to a
resonance at T � 5 MeV.

set by the freeze-out of beta-equilibrium at T ' 1 MeV.
The change in the neutron to proton ratio with non-zero
�e is simply a Boltzmann factor n=p / e��e � 1 � �e.
And since Yp / n=p, the uncertainty in the constraint on
�e is directly related to the uncertainty in the primordial
helium abundance, �Yp

��e � �Yp
Yp

: (4.1)

Therefore, one can be very conservative regarding the
error on the primordial abundance, e.g., �Yp � �0:010
[30] and still limit ��e � �0:04, or equivalently, jLej .
0:03. This method ultimately relies on the uncertainty
(mostly systematic) in the primordial abundance of 4He.
Re�nement of this constraint may be possible by applying
CMB priors to BBN predictions combined with reduced
systematic uncertainties of observed primordial element
abundances [31].

Analysis of synchronized transformation of neutrino
asymmetries indirectly translates the constraints on �fe
to �i� and �i� . In the extreme scenario, an asymmetry

�i�;� in �� (�� ) is equilibrated with �� (��) for maximal

mixing, such that the state ��� has ��� = 0:5�i�;� . The

LMA solution transforms ��� as (3.3) so that

�fe =

�
1� cos 2�0

4

�
�i�;� : (4.2)

For the best-�t LMA mixing angle sin2 2�0 � 0:8, the
limit on an initial asymmetry is �i�;� . 0:15. However,
the LMA mixing angle is not precisely speci�ed. The
lower end of the 95% C.L. region has sin2 2�0 � 0:6, for
which the limit on the initial asymmetry is considerably
weaker7 �i�;� . 0:5. The e�ective \2�" limit therefore
is actually an order of magnitude larger than that given
in DHPPRS since a \small-angle" LMA solution reduces
the transformation amplitude considerably. The sensitiv-
ity of the KamLAND experiment to the LMA parameter
space can con�rm the LMA parameters [32] and poten-
tially reduce the mixing angle uncertainty, and thus re-
duce the uncertainty of constraints on lepton number.

V. DISCUSSION AND CONCLUSIONS

Due to synchronization by the neutrino self-potential,
transformation of a large fraction of any asymmetries in
�� or �� number to �e is an inescapable consequence of
the near bi-maximal mixing framework emerging for the
neutrino mass matrix. We have performed a full numer-
ical integration of the evolution equations in Eq. (2.4).
The numerical solution is nontrivial due to sti�, non-
linear equations with terms whose time scales vary by
several orders of magnitude. We con�rm the numerical
results of DHPPRS, and agree that large initial asym-
metries in �� and �� are e�ectively transformed into a �e
asymmetry, so that the bound from BBN bounds all [18].
In addition, we have shown numerically that the cou-

pled evolution of the full-momentum results can also be
obtained in the average-momentum case when the non-
linear coupling is neglected. The transfer of neutrino
asymmetries between avors occurs identically even when
ignoring the numerically dominant self-potential. In Eq.
(2.19), we have derived that the self-potential drives a
synchronization of all momenta to a momentum mode
p=T = �, so that the system by numerical coincidence
closely follows the average momentum case p=T ' 3:15.
We conclude by considering the following implications

of these results:

1. The uncertainty in the lepton number of the uni-
verse may be reduced by up to two orders of magni-
tude. However, the most conservative limits place

j�ej . 0:04 ; (5.1)

j�� + �� j . 0:5 ; (5.2)

7 Note thatwe expect this limit would be tighter were we to include
the e�ect of collisions.
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(jLej . 0:03 and jL� + L� j < 0:4). These limits
will be improved by reducing systematic uncertain-
ties in the inferred primordial 4He abundance and
the precise determination of the baryon density by
satellite anisotropy experiments MAP and Planck
[33]. It also may be improved by veri�cation of the
LMA parameters by KamLAND, particularly if the
mixing angle is at the large end of the presently al-
lowed range. The upcoming data from SNO [34]
will also play a very important role in reducing the
mixing parameter uncertainties.

2. Because e�ectively asymmetries in any neutrino a-
vor will a�ect beta-equilibrium, the stringent limits
(5.1) consequentially eliminate the possibility of de-
generate BBN [19], since an increase the expansion
rate with large j��;� j � 1 can no longer be compen-
sated by a small �e � 0:1.

3. The above limits on degeneracy in terms of extra
relativistic degrees of freedom �N� (see Eq. (1.3))
are impressively small: �N� . 0:004 for the best-
�t LMA solution, and �N� . 0:2 for the lower limit
on the mixing angle in the LMA solution. DHPPRS
suggest that �N� can be eliminated as a cosmo-
logical parameter in upcoming �ts to the precision
CMB data [8]. It is certainly that true that � can
be eliminated, but that is not the only possible con-
tribution to �N�. If any nonstandard contribution
to the relativistic energy density were to be detected
via the CMB, its origin would be something more
exotic than degenerate neutrinos, e.g., the decay of
an massive particle to relativistic species after BBN
but before CMB decoupling [35].

4. It is actually still possible that the upper limit
for �e in Eq. (1.4) be ful�lled. Strictly speaking,
we have set tight new degeneracy limits assuming
no non-standard contribution to the energy den-
sity at the time of BBN. It is conceivable that

�e � �� � �� � 0:2 if another relativistic particle
or scalar �eld contributes the extra energy density
required to compensate for the large �e chemical
potential. In this case, avor-transformation im-
proves the current ��;� limits by at most an order
of magnitude. Such an unnatural scenario can de-
tected by comparison with the CMB.

5. A possible complication to the scenario presented
here could be mixing with a light sterile neutrino.
Obviously, if the LSND result is con�rmed by
MiniBooNE, then the physics will be much more
complicated than assumed here. If the LSND
result is not con�rmed, there is still the possibility
of subdominant mixing to steriles that may be dif-
�cult to detect in neutrino oscillation experiments,
but which may still play an important role in the
early universe. Such scenarios have not yet been
explored.

6. A �nal complication is the yet-unexcluded possibil-
ity of a low reheating temperature (T � 1 MeV)
[36], such that the initial conditions of thermal or
chemical equilibrium for neutrinos for the analy-
sis presented here is invalid. Stronger constraints
on low-temperature reheating scenarios may be ob-
tained by studying their e�ects on the light element
abundances in detail.
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